

ISSN: 2395-5317 ©EverScience Publications 48

Journal of Network Communications and Emerging Technologies (JNCET)

 Volume 5, Special Issue 2, December (2015)

www.jncet.org

Layer Search Algorithm for 2-D Array

Tushar Sharma

Department of Computer Science Engineering, BS Anangpuria Institute of Tech. & Management, Haryana, India

Rohit Raghav

Department of Computer Science Engineering, BS Anangpuria Institute of Tech. & Management, Haryana, India

Abstract – Searching algorithms are considered as the most

required techniques in “Data Structures and Algorithm”. This

research paper is presenting a new searching algorithm named as

Layer Search for searching elements in 2-D Array. Layer Search

is an algorithm which can particularly be implemented on square

matrix. In this paper wholesome description, pseudo code,

implementation and efficiency with conclusion is mentioned for

the Layer Search which works faster than Linear Search.

Index Terms – Searching Techniques, Linear Search, Layer

Search, Time Complexity, Chain Reaction.

This paper is presented at International Conference on Recent Trends

in Computer and information Technology Research on 25th & 26th

September (2015) conducted by B. S. Anangpuria Institute of

Technology & Management, Village-Alampur, Ballabgarh-Sohna

Road, Faridabad.

1. INTRODUCTION

The searching algorithms are known as the backbone of a

program and an application. In this era we are using many of

the applications and web applications in our PC as well as in

our desktop and these apps too have search command option to

search a particular value in their database. By analysing a game

named “Chain Reaction” which works on matrix concept

where an element gets split into all possible directions we have

designed a new searching technique named as Layer Search. In

many extents Layer Search is better and faster than Linear

Search.

Linear Search: This is the traditional algorithm for searching

an element in the array. In this searching technique the

compiler checks the existence of a particular value one by one

checking method. This means it first move in 1st row and

compare the entered value with all elements in that row. If

compiler found that element, it shows its index otherwise

follow the same search procedure with the 2nd row and so on.

Ex. If an array is of size [3][3] then 1st it will search [0][0],

[0]1], [0][2]. Then [1][0], [1][1], [1][2] and so on the operation

will be followed.

Layer Search: This is a new algorithm designed by us which

works on the concept of layer by layer searching technique. In

this technique the compiler distributes the whole square matrix

into different layers in square formation. This means it will

consider the middle most elements of the array forming a

square as 1st layer, the elements present at the very 1st outer

indexs of the elements of 1st layer are considered as 2nd layer

and so on the distribution of the layers take place.

2. CONCEPT BEHIND SEARCHING

Each searching algorithm has its own process to search the

existence of an element in 2-D array. This process is specified

at the time of designing that particular algorithm by the

programmer.

In this sub-topic we will discuss about the process of searching

process of Layer Search in a square matrix.

Ex. Let we have a 2-D array or square matrix of size [4][4].

[0][0]

[0][1]

[0][2]

[0][3]

[1][0]

[1][1]

[1][2]

[1][3]

[2][0]

[2][1]

[2][2]

[2][3]

[3][0]

[3][1]

[3][2]

[3][3]

Fig.1: 1st Layer formation

http://www.jncet.org/

ISSN: 2395-5317 ©EverScience Publications 49

Journal of Network Communications and Emerging Technologies (JNCET)

 Volume 5, Special Issue 2, December (2015)

www.jncet.org

[0][0]

[0][1]

[0][2]

[0][3]

[1][0]

[1][1]

[1][2]

[1][3]

[2][0]

[2][1]

[2][2]

[2][3]

[3][0]

[3][1]

[3][2]

[3][3]

Fig.2: 2nd Layer formation

 As we can see in above example we are having a square

matrix of size 4X4. By the law proposed for distribution of

layers, compiler will break the whole matrix into various

layers. In the above example, there will be the formation of

only 2 layers. 1st layer will be containing the indexes [1][1],

[1][2], [2][1 and [2][2] and 2nd layer will be containing the

indexes [0][0], [0][1], [0][2], [0][3], [1][0], [1][3], [2][0],

[2][3], [3][0], [3][1], [3][2] and [3][3] The compiler will check

the existence of the value to searched in the 1st layer. If it is

found, it will show the message “Found” with the respective

index otherwise will continue its search till the last layer.

3. PSEUDO CODE

Let us consider an array, list of size n*n. Let m1, m2 be the

middle indexes of the array, i and j be the loop variables and

variable named “value” to store the value of element to be

searched. The step-by-step procedure for implementing the

Layer Search is as follows:-

Step 1: Enter the size of n*n square matrix.

Step 2: Enter the value to be searched.

Step 3: m2=n/2.

Step 4: m1=m2-1.

Step5: If n is even proceed to function call

LayerSearch(list,value,m1,m2) and skip to step 5.1.1 otherwise

to step 5.2.

Step 5.1.1: If (m1<0 OR m2>n-1) then print “Value not found”

and go to step 6 otherwise to step 5.1.2. /* m1 and m2 in

layersearch() contains value passed in it. Not the actual values

at main(). */

Step 5.1.2: Loop begin where i=m1 and j=m1, will execute till

j<=m2 and increment of j by 1.

Step 5.1.2.1: If value is equal to list[i][j], print “Value found at

[i][j] index and proceed to step 6 otherwise to step 5.1.2.2.

Step 5.1.2.2: If value is equal to list[j][i], print “Value found at

[j][i] index and proceed to step 6 otherwise to step 5.1.3. Loop

ended.

Step 5.1.3: Loop begin where i=m2 and j=m1, will execute till

j<=m2 and increment of j by 1.

Step 5.1.3.1: If value is equal to list[i][j], print “Value found at

[i][j] index and proceed to step 6 otherwise to step 5.1.3.2.

Step 5.1.3.2: If value is equal to list[j][i], print “Value found at

[j][i] index and proceed to step 6 otherwise to step 5.1.4. Loop

ended.

Step 5.1.4: Recursive function call LayerSearch(list,value,m1-

1,m2+1) and proceed to step 5.1.

Step 5.2: If value is equal to list[m2][m2], print”Value found

at [m2][m2] index and goto step 6 otherwise function call

LayerSearch(list,value,m2-1,m2+1) and goto to step 5.1.1. /*

Here (m2-1) is m1 and (m2+1) is m2 for LayerSearch() as in

step 5.1 for the case of even. */

Step 6: End.

4. IMPLEMENTING LAYER SEARCH IN C

Let us make a program of Layer Search in C to check the

working procedure.

/*Layer Search in 2-D Array or Square Matrix”

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include<time.h>

#define n 8

void layersearch(int list[n][n],int value, int m1, int m2);

void main()

http://www.jncet.org/

ISSN: 2395-5317 ©EverScience Publications 50

Journal of Network Communications and Emerging Technologies (JNCET)

 Volume 5, Special Issue 2, December (2015)

www.jncet.org

{

int list[n][n]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59

,60,61,62,63,64};

int value,m1,m2,i,j;

clrscr();

for (i=0 ; i< n ; i++)

 {

 for (j=0; j< n; j++)

 {

 printf("[%d][%d]=%d\t",i,j,list[i][j]);

 }

}

printf("\n\nEnter the value to be searched : ");

 scanf("%d",&value);

 m2=n/2;

 m1=m2-1;

 layersearch(list,value,m1,m2);

}

void layersearch(int list[n][n],int value, int m1, int m2)

{

int i,j;

if (m1<0 || m2>n-1)

 {

 printf("%d Not found",value);

 getch();

 exit(0);

 }

for (i=m1 , j=m1 ; j<=m2 ; j++)

 {

 if (list[i][j]==value)

 {

printf("%d is present at [%d][%d] index",value,i,j);

 getch();

 exit(0);

 }

 else

 {

 if (list[j][i]==value)

 {

 printf("%d is present at

 [%d][%d] index",value,j,i);

 getch();

 exit(0);

 }

 }

 }

 for (i=m2 , j=m1 ; j<=m2 ; j++)

 {

 if (list[i][j]==value)

 {

printf("%d is present at [%d][%d] index",value,i,j);

http://www.jncet.org/

ISSN: 2395-5317 ©EverScience Publications 51

Journal of Network Communications and Emerging Technologies (JNCET)

 Volume 5, Special Issue 2, December (2015)

www.jncet.org

 getch();

 exit(0);

 }

 else

 {

 if (list[j][i]==value)

 {

printf("%d is present at [%d][%d] index",value,j,i);

 getch();

 exit(0);

 }

 }

 }

 layersearch(list,value,m1-1,m2+1);

}

This is the code of implementation of Layer Search in C

Technology. We can also implement the same logic in other

languages too.

5. OUTPUT OF LAYER SEARCH

Here are the few of the outputs of the layer search.

These are the outputs for the values present in the array.

 Fig.3: Successful Search of 33

 Fig.4: Successful Search of 55

These are the outputs for the values not present in the array.

 Fig.4: Unsuccessful Search of 69

Fig.5: Unsuccessful Search of -1

http://www.jncet.org/

ISSN: 2395-5317 ©EverScience Publications 52

Journal of Network Communications and Emerging Technologies (JNCET)

 Volume 5, Special Issue 2, December (2015)

www.jncet.org

6. CONCLUSION

In this paper we proposed a new searching algorithm for 2-D

array of order n*n or square matrix. The working of this

algorithm is totally based on the formation of different layers

of elements on the basis of their indexes and then searching a

particular element layer by layer. The complexity of linear

search is n2 because it uses straight forward method. The

complexity of the Layer Search is very less for inner layers and

little high for outer layers.

The best case in the algorithm is for the elements present at the

inner layer.

The worst case in the algorithm is for the elements present at

the outer most layers.

REFERENCES

[1] Jyotirmayee Rautaray, Hashed Based Searching Algorithm, Vol. 2,

Issue 2, Februrary 2013.

[2] Nitin Arora, Two Way Linear Search Algorithm, Vol. 107-No. 21,
December 2014.

[3] Debadrita Roy, A comparative Analysis of Three Different Types of

Searching Algorithms in Data Structures, Vol. 3, Issue 5, May 2014.
[4] A. K. Sharma, Data Structures using C, 2nd Edition, Pearson Publications.

[5] E Balagurusamy, Object Oriented Programming with C++, 4th Edition,

The McGraw-Hill Compaines.

[6] S.K. Srivastava, Data Structures Through C in Depth, 1st Edition, BPB

Publications.

http://www.jncet.org/

